循環溫度對錳酸鋰/鈦酸鋰電池界面的影響

時間:2020-01-30 15:33來源:新能源Leader 作者:憑欄眺
點擊: 172 次
      鋰離子電池多數反應發生在固/液兩相界面,因此正負極的界面穩定性就決定了鋰離子電池的循環穩定性。而溫度對于反應速度具有決定性的影響,因此溫度對于電極界面狀態也會產生明顯的影響。
 
      近日,法國國家科研中心(CNRS)的Nicolas Gauthier(第一作者)和Cecile Courreges(通訊作者)、Herve Martinez(通訊作者)等人對LiMn2O4/Li4Ti5O12體系鋰離子電池在25、40、60℃下經過100次循環后的界面特性進行了研究,測試結果表明隨著循環溫度的升高,電極界面的界面膜的厚度也在增加,同時高溫循環的LTO表面也檢測到了少量的金屬態Mn元素。
 
      實驗中采用的電極配方為93%的活性物質(LMO、LTO)、4%的炭黑和3%的5130膠,充分分散后涂布在鋁箔上,其中正極涂布量為17mg/cm2,負極涂布量為9mg/cm2,LTO負極的理論容量小于LMO正極,因此該電池為負極限制,能夠更好的反應LTO的特性。經過碾壓LTO電極的孔隙率為45%,LMO電極的孔隙率為40%。采用扣式電池組裝為全電池,分別在25、40、60℃下進行循環。
 
     下圖a、b和c分別為LMO/LTO電池在不同溫度下的第1次、99次和100次循環的充放電曲線,從下圖a可以看到在放電過程中25℃下充電容量為173mAh/g,40℃充電容量為172mAh/g,與其理論值175mAh/g比較接近,而在60℃下LTO充電容量的容量為178mAh/g,略高于理論值。在首次充放電中的不可逆容量分別為4mAh/g(25℃)、8mAh/g(40℃)和19mAh/g(60℃),表明正極材料提供的部分Li+由于界面副反應的原因在LTO負極表面消耗了。
 
      在經過C/2循環99次后,所有的溫度下循環的電池都出現了容量衰降的現象,60℃下循環的電池尤為嚴重,同時我們注意到在C/2倍率下,電池的充放電容量完全相同,也就是庫倫效率為100%。為了減少極化對電極的影響,作者在第100次循環時,將電池的充放電電流降低為C/10,從下圖可以看到在40℃循環的電池放電容量比充電容量多8mAh/g,60℃循環的電池放電容量比充電容量多19mAh/g,而在25℃下循環的電池充放電容量則么有明顯的區別,這表明在高溫下循環的電池極化比較大,因此在C/2倍率進行放電時由于極化的原因電池的部分容量未放出。從下圖d的不同溫度下的循環曲線可以看到,在60℃下LTO材料的比容量出現了快速衰降的趨勢,而25℃下循環的LTO在經過5次循環后,比容量就沒有明顯的衰降,40℃下循環的電池經過30次循環后,電池容量也未見明顯的衰降。
      作者通過交流阻抗工具分析了在不同溫度下循環100次后的電極界面特性,結果表明隨著循環溫度的提升,電池的界面膜阻抗也出現了明顯的增加。這可能是由于高溫下循環時副反應導致的界面膜持續生長有關。因此,作者采用XPS工具對LTO表面特性進行了分析。
 
      從下圖的LTO負極和LMO正極的XPS分析結果可以看到,新電極的Ti 2p和Mn 2p特征峰分裂為兩個,其中Ti 2p分裂為Ti 2p3/2(458.7eV)和Ti 2p1/2(464.4eV),Mn 2p分裂為641.4eV和642.2eV兩個特征峰,對應的為Mn3+和Mn4+。
 
      在經過循環后表征LTO嵌鋰狀態的Ti3+的信號始終存在,并且隨著循環溫度的提升Ti3+所占的比例也在不斷增加,在60℃下Ti3+占總Ti元素含量的25%,40℃占20%,25℃占7%,這主要是由于隨著界面膜厚度的增加,因此電子擴散和離子擴散的速度都受到較大的影響。對于LMO電極,在經過100次循環后,所有溫度下循環的Mn 2p特征峰幾乎都沒有變化,表明LMO電極具有良好的可逆性。同時我們注意到在經過100次循環后所有LMO電極中Mn元素的含量都出現了相似程度的下降(4.6%降低到3.0%左右),表明LMO電極表面也被一層表面膜所覆蓋。
      為了分析電極界面膜的成分,作者又對循環前后的LTO電極表面的O 1s和F 1s進行了分析。在新的LTO電極的O 1s圖譜中,在530.1eV附近的特征峰對應的LTO中的O2-,其他兩個能量稍高的特征峰對應的為LTO顆粒表面吸附的一些化合物中的O(例如O-H、O=C和C-O-C等),在經過100次循環后,O 1s圖中在531.5eV、532.5eV處出現了兩個新的特征峰,這主要是電解液在LTO表面分解產物(例如ROCO2Li),同時在533.5eV附近出現的特征峰對應的為P-F化合物(例如PO3-4,PO(RO)3或LixPOyFz),這主要來自于LiPF6的分解。同時我們還能夠發現O含量隨著溫度升高而顯著下降,例如在25℃下循環100次后O元素含量為9.2%,但是在60℃循環100次后僅剩余約2.7%,這表明隨著循環溫度的提升,LTO表面覆蓋層的厚度也在持續增加。
 
      從F 1s圖譜中可以看到,新的LTO電極中F元素主要來自于其中的PVDF粘結劑,其中687.9eV和689.5eV兩個特征峰,對應的為PVDF粘結劑分子中的CF2和CF3/CF2-CF2。經過循環后PVDF中的F元素含量下降,這主要是受到循環后LTO電極表面電解液分解產物增厚的影響。同時我們還發現,在經過循環后除了PVDF中的F元素外,還出現了兩個新的特征峰,分別對應為LiF(685eV)和LixPOyFz(686.5eV),而且這些新的含F元素的分解產物隨著循環溫度的升高而增加,例如在25℃下這些含F產物占比為2.0%,40℃占比為4.1%,而在60℃時占比則達到了8.7%,同時我們還能夠注意到循環溫度的高低對于LTO電極表面的LiF的含量沒有顯著的影響。
      下圖對比了LTO電極和LMO電極在不同溫度循環后表面層和活性物質按照原子數量的占比情況,在經過25℃、40℃和60℃循環后LTO表面膜的厚度也不斷增加,但是對于LMO而言,循環溫度對其表面膜的厚度影響比較小。
      為了分析是否有Mn元素從正極溶解,并遷移到LTO電極的表面,作者對在40℃和60℃循環后的LTO電極表面通過XPS工具進行了分析。從下圖可以看到,在40℃循環的LTO電極表面的Mn 2p在641.3eV和642eV附近出現了兩個特征峰,對應為Mn2+,研究表明這可能是MnF2或MnO等產物,這會導致電池阻抗增加。
 
      在60℃循環的LTO電極表面的Mn元素出現了顯著的增多,同時在638eV附近出現了一個新的特征峰,對應的為0價態的Mn,也就是金屬態的Mn,這可能是因為高溫加劇了LiPF6的分解,從而產生了更多的HF,從而加劇了Mn元素的溶解,從而在負極表面出現了金屬態的Mn。而負極表面的Mn元素會導致SEI膜的破壞,因此會加劇電解液在負極表面的分解,從而加速電解液在LTO表面的分解,引起電池容量的持續衰降。
      下圖為在不同溫度下循環后的LTO電極的表面元素分布,從P元素的分布圖可以看到,LTO顆粒表面存在F-P化合物,特別是40℃和60℃循環后的LTO電極表面的P元素含量較高,表明高溫下電解液在LTO電極表面的分解也更嚴重一點。Mn元素的分析表明只有在60℃下循環后的LTO表面才能看到Mn元素的分布。

      作者采用質譜儀對負極表面的惰性膜層中的分子結構進行了分析,從圖中能夠看到在經過100次循環后,檢測到主要二次離子主要包含碳類:12(C-)、13(CH-)、24(C2-)和25(C2H-)主要與電解液溶劑的分解有關;F類和P類主要包含45(LiF2-)、63(PO2-)、79(PO3-)和101(PO2F2-)主要來自LiPF6的分解;強度最高的17(OH)一方面來自于電解液溶劑的分解,另一方面也來自LTO。在40和60℃循環的LTO負極表面跟P有關的二次離子的數量要明顯高于25℃循環的電池,這表明LTO在高溫下循環時SEI膜厚度增加主要是受到來自LiPF6分解的影響。此外,我們在60℃循環的LTO電極表面還觀察到了71(MnO)的峰,表明從正極溶解的Mn元素在LTO負極表面發生了沉積。
      為了進一步分析LTO表面SEI膜結構組成,作者采用濺射的方式逐層侵蝕掉不同深度的SEI膜,分析SEI膜在不同深度位置處的元素信息。從下圖可以看到越接近LTO顆粒表面,Ti+含量也就越高,但是低溫下循環的LTO電極增加得更快一些,這表明高溫下循環的LTO電極的表面SEI膜厚度要更厚一些。
 
      25℃循環后的LTO電極表面在經過第一次濺射(30s)后電極表面的C3H6O+和PO2-的強度就幾乎下降為零,而Li2F-的強度則呈現先升高后降低的趨勢,表明SEI膜中有機成分和含P化合物等主要集中在表層,Li2F則主要集中在SEI膜的下層。40℃循環后的LTO電極表面C3H6O+和PO2-的強度也是在首次濺射的過程中就出現了大幅度的降低,但是PO2-的強度要略高于25℃下循環的LTO電極,表明LiPF6在高溫下的分解要比常溫嚴重一些。
 
      同時在40℃循環的LTO電極表面也沒有觀察到Li2F-的強度先升高后見底的現象,表明在這一溫度下有機成分、含P化合物和LiF等成分是混合在一起的。在60℃下循環后的LTO負極表面,C3H6O+和PO2-、Li2F-的強度在開始的時候都所占的比例都比較高,表明LiPF6在高溫下的分解更為嚴重,C3H6O+和PO2-的強度也主要是在首次濺射就發現了明顯的下降,表明這些成分主要集中在SEI膜的表層,但是這些成分的強度在隨后的幾次濺射之中都保持了在比較高的水平,表明這些成分在SEI膜中的比例更高,而且也分布得更深。Li2F-的強度從開始濺射就一直在降低。最后關注一下Mn元素的情況,在60℃循環的LTO負極表面的MO-的強度要明顯高于40℃循環的LTO電極,表明在60℃下正極中的Mn元素更容易溶出,并沉積在LTO電極的表面。MnO-的強度先升高后降低表明Mn元素的沉積是在有機物和含P化合物層之下。
      Nicolas Gauthier的研究表明高溫循環會顯著地增加LTO電極表面SEI膜的厚度,同時改變其成分構成,在60℃的高溫下會導致更為嚴重的LiPF6分解,在LTO電極表面產生F-P化合物成分較高的SEI膜,同時還會加速LMO中Mn元素的溶解,并遷移到LTO電極表面,嵌入到SEI膜的下層之中,破壞SEI膜的構成,從而引起電池可逆容量的持續降低。
 
      本文主要參考以下文獻,文章僅用于對相關科學作品的介紹和評論,以及課堂教學和科學研究,不得作為商業用途。如有任何版權問題,請隨時與我們聯系。
 
      Impact of the cycling temperature on electrode/electrolyte interfaces within Li4Ti5O12 vs LiMn2O4 cells, Journal of Power Sources 448 (2020) 227573,Nicolas Gauthier , Cecile Courreges , Julien Demeaux , Cecile Tessier, Herve Martinez
 
(責任編輯:子蕊)
文章標簽: 鈦酸鋰電池 錳酸鋰
免責聲明:本文僅代表作者個人觀點,與中國電池聯盟無關。其原創性以及文中陳述文字和內容未經本網證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。
凡本網注明 “來源:XXX(非中國電池聯盟)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。
如因作品內容、版權和其它問題需要同本網聯系的,請在一周內進行,以便我們及時處理。
QQ:503204601
郵箱:cbcu@www.astra-soft.com
猜你喜歡
  • 美國ION公司固態電池新突破:超125次循環,容量衰減低于5%

    美國電池初創公司IONStorageSystems(ION)日前宣布,旗下Solid-State固態電池已成功實現超過125次循環,性能容量衰減低于5%,為未來部署提供了超過1000次循環的潛力。 據介紹,ION是一家位于美國馬里蘭州的固態電池(SSB)制造商,其無陽極和無壓縮固態電池
    2024-03-11 22:56
  • 鈷酸鋰軟包電池高溫循環膨脹改善研究

    鈷酸鋰軟包電池是正極采用鈷酸鋰,外殼用鋁塑包裝膜封裝的電池,廣泛用于便攜式電子產品上。由于鈷酸鋰軟包電池的外殼采用的是鋁塑膜,電池高溫循環后一般膨脹率大約10%。人們對循環性能的研究較多,大部分是通過電解液添加劑,改善正極材料和改善負極材料,
    2021-10-22 16:08
  • 低溫對于21700電池循環性能的影響

    研究表明低溫循環過程中的容量衰降主要來自負極的析鋰,以及由此引起的界面副反應。
    2021-07-30 08:29
  • 如何原位測量超快充條件下鋰離子電池的內部溫度

    阿拉巴馬大學聯合美國橡樹嶺國家實驗室,通過在電池內部植入微型熱電偶,原位測量了2Ah的LiNi0.6Co0.2Mn0.2O2/石墨軟包電池在以7C倍率進行超快充時的內部溫度,考察了內部溫度和表面溫度的差異,估算了充電時的產熱速率。同時還討論了冷卻方式所帶來的影響。
    2021-01-04 09:31
  • 循環、溫度和電極間隙對方形鋰離子電池的安全性影響研究

    安全是鋰離子電池使用時必須考慮的重要問題。然而,有關電極間隙、循環、電解質降解或析鋰是如何影響方形電池安全性的研究很少。在本文中作者對在0℃、23℃和45℃循環的方形電池開展了系統研究。采用ARC技術評估了電極間隙對電池安全性的影響。研究表明對于
    2020-12-05 23:12
  • 單晶結構如何提升高鎳三元材料循環壽命

    高鎳材料在帶來更高容量的同時,也導致了材料穩定性的顯著降低。
    2020-10-22 09:40
  • 溫度/電流耦合高功率鈦酸鋰電池模型

    鈦酸鋰電池憑借著出色的功率性能和優異的循環壽命,在動力鋰離子電池領域得到了一席之地,在一些對快充和低溫性能要求較高的領域得到了應用。
    2020-10-12 10:38
  • 循環老化對于鋰離子電池中鋰和電解液分布的影響

    鋰離子電池在循環的過程中持續的界面副反應,會引起電解液消耗和活性Li的損失。
    2020-10-05 17:23
  • 鋰電池內阻受什么影響最大

    環境溫度是各種電阻的重要影響因素。因溫度直接影響到電池電化學材料的活性,直接決定電化學反應的速度和離子運動的速度。
    2020-09-01 16:51
  • 什么是鋰離子電池的日歷壽命和循環壽命?

    電池的壽命包括循環壽命和日歷壽命,現有標準針對常規壽命和循環壽命給出了具體的測試方法,但關于日歷壽命只有少數幾個國外測試手冊有所涉及。
    2020-05-09 10:09
專題
相關新聞
  • 美國ION公司固態電池新突破:超125次循環,容量衰減低于5%

    美國電池初創公司IONStorageSystems(ION)日前宣布,旗下Solid-State固態電池已成功實現超過125次循環,性能容量衰減低于5%,為未來部署提供了超過1000次循環的潛力。 據介紹,ION是一家位于美國馬里蘭州的固態電池(SSB)制造商,其無陽極和無壓縮固態電池
    2024-03-11 22:56
  • 鈷酸鋰軟包電池高溫循環膨脹改善研究

    鈷酸鋰軟包電池是正極采用鈷酸鋰,外殼用鋁塑包裝膜封裝的電池,廣泛用于便攜式電子產品上。由于鈷酸鋰軟包電池的外殼采用的是鋁塑膜,電池高溫循環后一般膨脹率大約10%。人們對循環性能的研究較多,大部分是通過電解液添加劑,改善正極材料和改善負極材料,
    2021-10-22 16:08
  • 低溫對于21700電池循環性能的影響

    研究表明低溫循環過程中的容量衰降主要來自負極的析鋰,以及由此引起的界面副反應。
    2021-07-30 08:29
  • 如何原位測量超快充條件下鋰離子電池的內部溫度

    阿拉巴馬大學聯合美國橡樹嶺國家實驗室,通過在電池內部植入微型熱電偶,原位測量了2Ah的LiNi0.6Co0.2Mn0.2O2/石墨軟包電池在以7C倍率進行超快充時的內部溫度,考察了內部溫度和表面溫度的差異,估算了充電時的產熱速率。同時還討論了冷卻方式所帶來的影響。
    2021-01-04 09:31
  • 循環、溫度和電極間隙對方形鋰離子電池的安全性影響研究

    安全是鋰離子電池使用時必須考慮的重要問題。然而,有關電極間隙、循環、電解質降解或析鋰是如何影響方形電池安全性的研究很少。在本文中作者對在0℃、23℃和45℃循環的方形電池開展了系統研究。采用ARC技術評估了電極間隙對電池安全性的影響。研究表明對于
    2020-12-05 23:12
  • 單晶結構如何提升高鎳三元材料循環壽命

    高鎳材料在帶來更高容量的同時,也導致了材料穩定性的顯著降低。
    2020-10-22 09:40
  • 溫度/電流耦合高功率鈦酸鋰電池模型

    鈦酸鋰電池憑借著出色的功率性能和優異的循環壽命,在動力鋰離子電池領域得到了一席之地,在一些對快充和低溫性能要求較高的領域得到了應用。
    2020-10-12 10:38
  • 循環老化對于鋰離子電池中鋰和電解液分布的影響

    鋰離子電池在循環的過程中持續的界面副反應,會引起電解液消耗和活性Li的損失。
    2020-10-05 17:23
本月熱點
歡迎投稿
聯系人:王女士
Email:cbcu#www.astra-soft.com
發送郵件時用@替換#
電話:010-56284224
在線投稿
微信公眾號
主站蜘蛛池模板: 玉蒲团之风雨山庄| a级毛片在线免费观看| 进进出出稚嫩娇小狭窄| 色94色欧美sute亚洲线| 欧美在线一级视频| 国产精选91热在线观看| 亚洲精品国产高清在线观看| 久久久一本精品99久久精品88| 91亚洲精品视频| 第一区免费在线观看| 小宝极品内射国产在线| 公与秀婷厨房猛烈进出视频| 一级一级一级毛片免费毛片| 精品人妻少妇一区二区三区不卡| 日韩不卡视频在线| 国产美女无遮挡免费视频| 亚洲欧洲日本精品| jizzjizzjizz中国| 色婷婷亚洲综合| 成人精品一区二区三区中文字幕| 午夜伦理宅宅235| jizzjizz之xxxx18| 欲乱美女诗涵番外5| 小兔子好大从衣服里跳出来| 偷拍激情视频一区二区三区| 中文国产成人精品久久一区| 精品国产免费一区二区三区| 天天操天天干天搞天天射| 亚洲激情黄色小说| gogo全球高清大胆啪啪| 永久免费毛片在线播放| 国产精品jizz视频| 亚洲成av人片在线观看无| 亚洲国产老鸭窝一区二区三区| 欧美综合成人网| 在线观看免费视频a| 亚洲国产日韩欧美一区二区三区 | 中文字幕高清在线| 粉嫩小泬无遮挡久久久久久| 国内精品久久久久久久影视麻豆| 免费**的网址|